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Summary

This paper describes an integrated aerodynamic/
dynamic/structural (IADS) optimization procedure
for helicopter rotor blades. The procedure combines
performance, dynamics, and structural analyses with
a general-purpose optimizer using multilevel decom-
position techniques. At the upper level, the structure
is defined in terms of global quantities (stiffnesses,
masses, and average strains). At the lower level, the
structure is defined in terms of local quantities (de-
tailed dimensions of the blade structure and stresses).

The upper level objective function is a linear
combination of performance and dynamic measures.
Upper level design variables include pretwist, point
of taper initiation, taper ratio, root chord, blade
stiffnesses, tuning masses, and tuning mass locations.
Upper level constraints consist of limits on power
required in hover, forward flight, and maneuver;
airfoil drag; minimum tip chord; trim; blade natural
frequencies; autorotational inertia; blade weight; and
average strains.

The lower level sizes the internal blade structure

at several radial locations along the blade. The lower
level optimization assures that a structure can be
sized to provide the stiffnesses required by the up-
per level and also assures the structural integrity of
the blade. The lower level design variables are the
box beam wall thicknesses and several lumped areas
that are analogous to longitudinal stringers in a wing
box cross section. The lower level objective func-
tion is a measure of the difference between the upper
level stiffnesses and the stiffnesses computed from the
wall thicknesses and lumped areas. Lower level con-
straints are on the Von Mises stress at the box corners

for multiple-load cases generated by several flight
conditions, limits on wall thicknesses for thin-wall
theory, and other dimensional considerations.

The IADS procedure provides an optimization
technique that is compatible with industrial design
practices in which the aerodynamic and dynamic
designs are performed at a global level and the
structural design is carried out at a detailed level
with considerable dialogue and compromise among
the aerodynamic, dynamic, and structural groups.
The IADS procedure is demonstrated for several
cases.

Introduction

Over the last decade, optimization techniques
have been studied for application to the rotor blade
design process. In reference 1, Miura presents a
survey on the application of numerical optimization

methods to helicopter design problems including ro-
tor blade design. Most optimization procedures have
dealt with a single discipline such as aerodynamics
(refs. 2-4), structures (ref. 5), or dynamics (refs. 2
and 6-9). However, the rotor blade design process
is multidisciplinary involving couplings and inter-
actions between several disciplines such as aero-
dynamics, dynamics, structures, and acoustics.
These couplings and interactions can be exploited
by the optimization procedure if all the disciplines
are accounted for simultaneously rather than sequen-
tially. For instance, in a review (ref. 10) on the im-
pact of structural optimization on vibration reduc-
tion, Friedmann emphasizes the need to include the
multidisciplinary couplings between aerodynamics,
dynamics, and structures even when optimizing only
for minimum vibration.

Techniques and strategies for merging disciplines
to obtain integrated rotorcraft optimization proce-
dures are developing. In references 11 and 12,
a plan is described for integrating the disciplines
of aerodynamics, dynamics, structures, and acous-
tics. As part of that plan, aerodynamics and
dynamics have been incorporated systematically into
performance (refs. 3 and 4) and airload/dynamic
(ref. 13) optimization procedures resulting in an
integrated aerodynamic/dynamic optimization pro-
cedure (ref. 14). Reference 15 summarizes recent
accomplishments based on that plan.

Other multidisciplinary rotor blade optimization.
work is described in references 16-19. Referee?. es 16
and 17 describe the formulation of a multidiscip_hnary

approach to rotor blade design for improved perfor-
mance and reduced fuselage vibrations. Reference 18
describes a staged optimization procedure for a ro-
tor for combined aerodynamics, dynamics, and struc-
tures. Reference 19 describes a multidisciplinary
optimization procedure to design high-speed prop
rotors.

What is lacking in previous multidisciplinary ro-
tor blade optimization procedures is an efficient
method to integrate structures or structural prop-
erties. Usually, structures or structural properties
are included in one of two ways---either as local de-
sign variables (indirectly affecting the response of the
blade) or as global design variables (directly affect-
ing the response of the blade). When local design
variables are used, the detail dimensions of a struc-
tural member at one or more radial locations along

the blade are used to generate structural properties.
When global design variables are used, structural
properties are the design variables. Both types of
design variables have limitations. Using local design
variables (e.g., refs. 6, 7, 18, and 19), such as wall
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thicknesses of the structural member, can lead to a

large number of design variables that can be compu-

tationally expensive. Also, this choice of design vari-

ables is at odds with the traditional design practice in

which chord, stiffness, and mass distributions along
the blade are determined and then a structure is de-

signed that matches these distributions. Using global

design variables (e.g., refs. 2, 9, 13, 14, 16, and 17), Symbols
such as stiffness and mass properties, in optimiza- A
tion also has disadvantages. When flapwlse bending
stiffness, chordwise bending stiffness, torsional stiff- AI

ness, and extensional stiffness distributions are used

as design variables, they are treated as independent
quantities. In reality, these stiffnesses are not inde-

pendent, and no guarantee can be given that a set ai
of wall thicknesses can be found that will simultane- b

ously give these stiffnesses. CD

This paper presents the methodology for incor-
porating aerodynamics, dynamics, and structures in CL :

an integrated optimization procedure using both lo- CF

ca] and global design variables. Multilevel decom- Cd
position techniques based on reference 20 are used

to add structural design variables and constraints Cd, all

to an existing aerodynamic/dynamic optimization

procedure (ref. 14). The product is an integrated c •
aerodynamic/dynamic/structural (IADS) optimiza- d,max

tion procedure. The multilevel formulation used in

this paper was presented first in reference 15. An- cl

other preliminary study of multilevel techniques ap- cr
plied to rotor blade design is described in
reference 21. ct

The multilevel decomposition approach has been DVp

successfully applied to multidisciplinary problems E
(e.g., refs. 22-24). As originally proposed in refer-

EA
ence 25, the coordination procedure consisted of an

optimum sensitivity analysis (ref. 26) and a set of Elzx
equality constraints that relate the detailed (local)

design variables of one subsystem to the global de- EIzz

sign variables on the level above. However, as pointed F

out in reference 27, these equality constraints have
caused difficulties in implementing multilevel decom- fb,i

position procedures. The IADS procedure is based fk
on the multilevel decomposition approach of refer-
ence 20 which eliminates the equality constraints in fk,l

the coordination procedure, thus allowing the use

of the optimum sensitivity derivative found in refer- fk,u
ence 28 that is less computationally costly. However

in the IADS procedure, the set of lower level con-
straints is replaced by an envelope function known as ft,i

the Kreisselmeir-Steinhauser function (KS function, A/
ref. 29) which further reduces the computational cost.

First, the general multilevel decomposition strat- G
egy with two levels will be discussed. (Note that the
systems with more levels are discussed in refs. 20, 22, GJ

and 25.) Next, the general strategy will be related to
rotor blade design. Then, the IADS development in-

cluding flowcharts of the upper and lower levels and

the optimization procedure will be explained. Re-

sults will be presented for several cases that demon-

strate the strengths of the IADS procedure.

and Abbreviations

area, ft 2

autorotational inertia,
rts

wjr , lbm- 2
j---1

ith lumped area, if2

box width, ft

rotor coefficient of drag

rotor coefficient of lift

centrifugal force, Ib

airfoil section drag coefficient

maximum allowable section drag
coefficient

largest section drag coefficient at

azimuth angle

airfoil section lift coefficient

root chord, ft

tip chord, ft

pth upper level design variable

Young's modulus of elasticity, lb/ft 2

extensional stiffness, lb

chordwise bending stiffness, lb-ft 2

flapwise bending stiffness, lb-ft 2

lower level objective function

ith bending frequency, per rev

kth frequency, per rev

lower bound on kth frequency,

per rev

upper bound on kth frequency,

per rev

ith torsional frequency, per rev

increment used in frequency win-

dow, per rev

torsional modulus of elasticity, lb/ft 2

torsional stiffness, lb-ft 2
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gc,i

9i

gmax

h

ITER

Izz

J

KS

ki

If

MRA

mi

N

NDV

n

92C

nP

n8

OBJ

P

R

rj

SN, ff

SN,ref

S4,ff

ith lower level constraint function

ith upper level constraint function

maximum lower level constraint

function, max{gc,i}

box height, ft

number of trim iterations

chordwise moment of inertia, ft 4

flapwise moment of inertia, ft 4

polar moment of inertia, ft 4

Kreisselmeir-Steinhauser function

ith weighting factor in objective
function

factor of safety

total number of aerodynamic

segments

ith segment tuning mass, slug/ft

number of blades

number of upper level design
variables

integer

number of constraint components in
lower level

frequency at n times the rotational
speed of the blade

number of structural segments

upper level objective function

main rotor power, hp

blade radius from center of

rotation, ft

distance along blade from center of
rotation, ft

distance from center of rotation to

center of jth segment, ft

N/rev rotating vertical hub shear in

forward.flight, lbf

reference value of N/rev rotating
vertical hub shear in forward

flight, lbf

4/rev rotating vertical hub shear in
forward flight, lbf

S4,ref

tk

tmax

vi

W

Xl

Xr

Ytr

Zl

Zu

g

ga

gy

Otw

A

P

o"

o"a

7-

f_

Subscripts:

a

ff

h

m

max

min

0

ref

reference value of 4/rev rotating
vertical hub shear in forward

flight, lbf

kth wall thickness, ft

nondimensional location of maxi-
mum airfoil thickness

Von Mises stress, lb/ft 2

ith lower level design variable

total blade weight, lbm

total weight of jth structural

segment, lbm

nondimensional distance from airfoil

leading edge to left of wing box

nondimensional distance from airfoil

trailing edge to right of wing box

location of ith tuning mass

point of taper initiation

nondimensional lower airfoil

coordinate

nondimensional upper airfoil
coordinate

coordination parameter

allowable average strain

average strain

maximum pretwist, deg

Lagrange multiplier

pull-down factor

bending stress, lb/ft 2

allowable stress, lb/ft 2

shear stress, lb/ft 2

azimuth angle, zero over tail, deg

rotor speed, rpm

available

forward flight

hover

maneuver

maximum

minimum

optimum

reference
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Superscripts:

i ith component

L lower level

T transpose

U upper level

A bar over a symbol indicates a nondimensional

quantity, and an asterisk (*) used as a superscript

indicates an upper level design variable.

Multilevel Optimization Strategy

With a multilevel decomposition approach

(refs. 20, 22, and 25), a large complex optimiza-
tion problem is broken into a hierarchy of smaller

optimization subproblems. This hierarchy can be

thought of as levels of increasing detail. At the upper

level, the subproblem is formulated in terms of global
quantities that describe the overall behavior of the

entire system. On the lower level, the subproblems
are stated in terms of local quantities and local con-

straints that have only a small impact on the entire

system. Each of these subproblems use local design
variables to reduce the violation of constraints that

are unique to that subproblem. The coupling be-

tween the upper level subproblem and the lower level
subproblems is preserved through a coordination pro-
cedure such as that described in references 20 or 25.

This coupling represents a dialogue between the lev-

els that, upon convergence, establishes compatibility
between the two levels.

Figure 1 illustrates a generic two-level optimiza-

tion procedure. Note that the analysis proceeds from

the upper level to the lower level while the optimiza-

tion proceeds from the lower level to the upper level.

First, the upper level analysis initializes all the global
quantities and responses and then provides informa-

tion to each lower level subproblem. Next, individual

lower level optimizations are performed that reduce

local constraints as much as possible and that provide

information to the coordination procedure. Finally,

the upper level optimization occurs. The preceding

description defines 1 cycle. This entire process is re-
peated for several cycles. Convergence occurs when

all the constraints (both upper level and lower level)
are satisfied and the upper level objective function is
minimized.

The rotor blade optimization problem can be de-

composed into one subproblem affecting the global

response of the blade and three subproblems affect-

ing portions of the blade. Quantities such as power

required, blade trim, autorotational inertia, natural

frequencies, total blade weight, and average strain

describe the global response of the blade. The entire

blade must be analyzed to obtain these response

quantities. Quantities such as stresses are detailed
response quantities since only a portion of the blade

must be considered to obtain these response quanti-

ties. Therefore, a two-level decomposed rotor blade

optimization problem can be defined as shown in fig-

ure 2. The upper level optimizes the blade by chang-
ing global quantities such as blade planform, twist,

and distributions of mass and stiffness. The upper

level chord, mass, and stiffness distributions are

treated as independent quantities. The reconciliation
between these distributions is done on the lower level,

which consists of several independent subproblems at

stations along the blade radius. These subproblems
optimize detailed cross-sectional dimensions to sat-

isfy stress constraints and to reconcile the upper level

independent mass, chord, and stiffness distributions
with the lower level calculated mass and stiffness dis-

tributions. This reconciliation is improved further by

a set of upper level coordination constraints. (See
appendix A.) First, the upper level analysis and op-

timization will be described, then the lower level

analysis and optimization, and last the overall IADS

system.

Upper Level Analysis and Optimization

The purpose of the upper level analysis is to

evaluate the overall rotor blade design on the ba-

sis of performance, dynamic, and global structural

measures. (For a description of the rotor blade de-

sign philosophy, see refs. 3, 4, 11, 12, 14, and 15.)
The upper level analysis is similar to the integrated

aerodynamic/dynamic analysis reported in refer-
ence 14 with the addition of extensional stiffness de-

sign variables, strain constraints, and coordination
constraints. As shown in figure 3, the blade is evalu-

ated for three flight conditions: hover, forward flight,

and maneuver. The Langley-developed hover anal-

ysis program HOVT (a blade-element momentum

analysis based on ref. 30) is used to predict power re-
quired in hover. The comprehensive helicopter anal-

ysis program CAMRAD/JA (ref. 31) is used to pre-
dict rotor performance (e.g., trim, airfoil drag, and

power required), loads, and frequencies for forward

flight and maneuver. The maneuver flight condition
simulates a coordinated turn in terms of an increased

load on the forward-flight lift requirement.

The rotor blade design process is defined in terms

of aerodynamic performance, dynamics, and global

structural requirements. Satisfactory aerodynamic

performance is defined by the following four require-
ments. First, the power required for any flight
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conditionmust be lessthan the availablepower.
Second,airfoilsectiondragalongthebladeradiuson
theadvancingandretreatingsideof therotordiskin
both forwardflightandmaneuvermustbelessthan
a maximumallowablevalue.Third, the rotormust
trim at eachflight condition.Therotor is trimmed
to a constantlift in forwardflight anda (different)
constantlift in maneuverwhichensuresthat thero-
tor hasno lossin lift capabilityor maneuverability
evenif soliditydecreasesfrom the initial to the fi-
nal design.Incorporationof a maneuverflight con-
dition is usedin placeof a constraintonsolidity,be-
causelow-speedmaneuverdeterminesrotor solidity
(ref. 32).Fourth,thebladetip chordmustbe larger
than a prescribedminimumvalue.Satisfactorydy-
namicsis definedin termsof limits on vibrational
frequencies.Thebladeis designedsothat thenatu-
ral frequencies(bothbendingandtorsional)donot
coincidewith integermultiplesof the rotor speed.
Also, the blademusthavesufficientautorotational
inertia asasafetymeasureneededin caseof engine
failure.In additiontosatisfyingthesedesignrequire-
ments,thebladeweightmustnotexceedsomeupper
limit. Satisfactorystructuralrequirementsarede-
finedin termsoflimitsontheaverageaxialstrainsfor
forwardflight andmaneuverflight conditions.The
upperleveloptimizationproblemisformulatednext
in termsof designvariables,objectivefunction,and
constraints.

Upper Level DesignVariables
The upperleveldesignvariablesare the blade

planform,stiffnesses,andtuningmasses.(Seefig.4.)
Thebladeplanformis definedby thepoint of taper
initiation (Ytr),root chord(cr), taper ratio (cr/ct),
and maximum pretwist (0tw). The blade is rectan-
gular from the root to Ytr and then tapers linearly

to the tip. The pretwist varies linearly from the

center of rotation to the tip. Global design vari-
ables include the blade chordwise, flapwise, torsional,

and extensional stiffnesses (denoted by EIxx, EIzz,

G J, and EA, respectively) at three radial locations:

blade root, point of taper initiation, and blade tip.

The stiffnesses are assumed to vary linearly between
these points and are treated as independent quanti-

ties. The remaining design variables are three tun-

ing masses (denoted by ml, m2, and m3) and their

locations (denoted by Yl,Y2, and Y3), respectively.
The total blade mass consists of the structural mass

(which is assumed to be constant) plus the sum of

the tuning masses. No attempt is made to reconcile
the change in weight with the change in design vari-

ables because the present work is based on extending

the procedure of reference i4 to include structures.

However, this reconciliation is possible. (See ref. 15.)

The center of gravity and aerodynamic offsets are co-
incident with the blade elastic axis. The number of

blades, rotor radius, rotational velocity, airfoils, and

airfoil distribution are preselected and fixed.

Upper Level Objective Function

The objective function to be minimized is a com-

bination of performance and dynamics measures and
is formulated as

L-h,ref _ff,ref X-rn,ref ON,ref

where Ph, Pff, and Pm are the powers required in

hover, forward flight, and maneuver, respectively.

The symbol N is the number of blades, and SN,ff
is the N/rev rotating vertical hub shear in forward

flight. The terms kl, k2, k3, and k4 are weighting fac-

tors chosen by the user, and Ph,ref, Pff,ref, Pm,ref,

and SN, ref are reference values used to normalize
and nondimensionalize the objective function com-

ponents. The usefulness of this objective function
was demonstrated in reference 14.

Upper Level Constraints

The upper level constraints are grouped into

performance, dynamic, structural, and coordination

constraints. This section of the paper discusses the

performance, dynamic, and structural constraints.
The coordination constraints are discussed later in

the paper. The performance and dynamic constraints

are the same as those used in reference 14. By con-

vention, the ith constraint gi is satisfied if it is less

than or equal to zero.

Performance constraints. The performance

constraints are on power required, trim, airfoil sec-
tion drag, and blade tip chord. The requirement that

the power required be less than the power available

is given by

PJ - 1 < 0 (2)
gi= _aa

for each flight condition, where Pj is the power
required for the ith flight condition and Pa is the
power available.

The requirement on the airfoil section drag trans-
lates into a constraint that each airfoil section distrib-

uted along the rotor blade operate at a section drag

coefficient Cd less than a specified allowable value

cd,all. (See appendix B.) This leads to 24 constraints
per flight condition because the blade is analyzed in
azimuth increments of 15 ° around the rotor disk. At



a givenazimuthangle(_), theconstraintis formu-
latedas

Cd,max

gi=---l <_O
Cd, Ml

(_ = 15°, 30°, 45°,..., 360°) (3)

where Cd,al1 is the allowable drag coefficient and

C_,max is the largest drag coefficient at any radial

station. (Note that the drag coefficients in the

reverse-flow region occurring on the retreating side

of the rotor disk are ignored.) In the present work,

the same value for Cd,al 1 is used on the advancing and
retreating side of the rotor disk. This simplifying

assumption can easily be lifted.

The trim requirement is difficult to translate into
a mathematical constraint. The trim constraints

in forward flight and maneuver are implemented by

using the method developed in reference 3, which

expresses the constraint in terms of the number

of trim iterations (ITER), the maximum number
of trim iterations allowed (ITERmax), and the pth

nondimensional design variable (DVp). The heuristic

trim constraint is given by

/NDV )
gi=(IWER-ITERmax+l) (_D-Vp <0 (4)

\p=l

where NDV is the number of design variables. In

the development of this equation in reference 3, the
addition of the summation term was found to im-

prove convergence because it allowed calculation of

the change in the trim constraint with respect to the

change in a single design variable.

The final performance requirement is a constraint
used to ensure that the blade tip chord does not

become too small. Thus,

gi = 1 - c____£__t_<0 (5)
Ct,min

an amount Af. Thus, for the upper bound,

A
gi = 1 <0 (6a)

and for the lower bound,

gi = l- fk <0 (6b)
fk,l --

where fk,u has a value that is Af below n + 1 per rev
and fk,l has a value that is Af above n/rev for the
applicable n. For example, if Af is 0.1/rev and .[4 is

5.6/rev, then nP would be 5/rev and (n + 1)P would

be 6/rev. Thus, fa,u and f4,l would be 5.9/rev and
5.1/rev, respectively. Formulating the constraints in

this manner allows the frequencies to change from

one optimization cycle to the next cycle provided

the frequencies avoid approaching integer multiples

of the rotor speed. This formulation is different from

the approaches used in references 13, 16, and 17
in which the frequencies are kept within prescribed

windows based on the reference blade frequencies.
In this work, constraints are placed on frequencies

in both forward flight and maneuver beca_!se blade

collective pitch and the amount of modal coupling

maybe different: for thetwo flight conditions, and
therefore the frequencies can be differenL

The constraint that the blade weight should be
less than some maximum value is formulated as

W
1 < 0 (7)

gi- _Tma x

where W is the total blade weight and Wmax is the
maximum allowable weight. The total blade weight is

the structural mass distribution (which is constant)

plus the sum of the tuning masses.

Finally, the blade must have enough auto-

rotational inertia (AI) for safe autorotation in case

of engine failure. The constraint is formulated so
that the autorotational inertia of the blade is greater

than some minimum value AImi n. Thus,

where ct is the tip chord and Ct,min is the minimum
tip chord allowed. This is a practical constraint used
to assure validity of the airfoil tables and to address

manufacturing considerations.

Dynamic constraints. The dynamic con-

straints are on frequencies, total blade weight, and
autorotational inertia. The constraint on the kth

frequency fk (either a bending or a torsional fre-

quency) is formulated such that the frequency is sep-

: arated from integer multiples of the rotor speed by

AI

gi = 1 AImin -< 0 (8)

Structural constraints. The structural con-

straints are on the average axial-strains. T-he sti_uc -
rural constraints evaluated at the same radial loca-

tions that are used to define the design variables

(fig. 4) are imposed on the average axial strains (cv)
as follows:

gy
gi = -- - I _< 0 (9a)

Ca
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and
gi = -1 - ey _< 0 (9b)

Ca

where ca is the magnitude of the allowable strain and

_ If CF
Cy EA (10)

where CF is the centrifugal force, EA is the ex-

tensional stiffness, and li is a safety factor on the
loads. The strain constraints are calculated using
loads from both the forward flight and the maneuver
flight conditions.

Upper Level Optimization

The upper level optimization consists of the

general-purpose optimization program CONMIN

(ref. 33) and an approximate analysis used to re-

duce the number of HOVT and CAMRAD/JA anal-

yses during the iteration process. The approximate

analysis is used to extrapolate the upper level objec-
tive function and upper level constraints with linear

Taylor-series expansions using derivatives of the ob-

jective function and constraints with respect to the
design variables

NDV 0OBJ

OBJ = OSJ0 + i=,_ _ 0ADV/ (11)

and

NDV Og

g = gO + _ _ ADVi (12)
i=1

The assumption of linearity is valid over a suitably
small change in the design-variable values and will

not introduce a large error into the analysis provided

that the changes ADV are small. Errors that may

be introduced by use of the approximate analysis
are controlled by imposing "move limits" on each

design variable during the iteration process. A move

limit that is specified as a fractional change of each

design-variable value is imposed as an upper and

lower design-variable bound. At the present time,
the move limits are manually adjusted.

Lower Level Analysis and Optimization

This section of the paper describes the lower level

analysis and lower level optimization procedure. The
purpose of each lower level optimization is to assess

whether a structure at the given radial location can

be sized to provide the stiffnesses required by the

upper level optimization and still have the strength

to withstand loads calculated by the upper level

analysis. The lower level optimizations can be done

in parallel because they are independent.

For simplicity, because closed-form equations can

be derived (see appendix C), the structural member

(fig. 5) is assumed to be a thin-walled isotropic box.
The box cross section is symmetric about the hori-

zontal axis with wall thicknesses (ti) and lumped ar-

eas (a j) which are analogous to longitudinal stringers
in a wing box cross section. The outer dimensions b

(the box beam width) and h (the box beam height)
are functions of the upper level design variables be-
cause b and h depend on the local chord and the
local airfoil thickness. The values of b and h are de-

termined by placing a box of maximum area within

the airfoil cross section by using the method of ref-

erence 34. (See appendix D.)

Lower Level Design Variables

The design variables are the three wall thicknesses

(tl,t2, and t4) and the three lumped areas (al,a2,
and a3). The lumped areas are used to give the

lower level more flexibility in matching the upper

level stiffnesses. For the present implementation, the
lumped areas are assumed to be square areas.

Lower Level Objective Function

The objective function is a measure of the dif-

ference between the stiffnesses required on the up-

per level and those determined from the lower design
variables

[EIzz-(EIzz)*] 2 [EIxx_=(EIxz)*] 2
r= [ J +[ (EIxx)* J

IVJ: (eJ)*] 2 (13)
+ [ (a J)* J

where a starred quantity ( )* denotes an upper level

design variable. The lower level cross-sectional prop-

erties Izx, Izz, and J are computed (see appendix C),
E is Young's modulus of elasticity, and G is the tor-

sional modulus of elasticity.

Lower Level Constraints

The constraints are enforced on the extensional

stiffness, stresses, and the physical dimensions of the
wall thicknesses and lumped areas. The extensional

stiffness constraint that requires the lower level cal-

culated extensional stiffness EA (appendix C) to be
equal or greater than the upper level extensional stiff-

ness (EA)* (an upper level design variable) is given
by

EA

gc,i = 1 (EA)* <- 0 (14)



at thegivencrosssection.Theextensionalstiffness
appearsin a constraintratherthanin theobjective
function(eq.(13))wheretheotherstiffnessesappear.
ThisisdonebecausetheroleofEA in the upper level

is limited to satisfying the strain constraints (eq. (9)).
The lower level is responsible only for assuring that

the value of EA is at least as large as the value

needed in the upper level; i.e., close matching of EA
to (EA)* is not required.

The stress constraint evaluated at the corner of

the box cross section shown in fig. 5 has the form

V(o, _)
gc,i = 1 < 0 (15)

O"a

where a is the bending stress, 7- is the shear stress,

and V(a, T) is the Von Mises stress measure. (See
appendix C.) Two stress constraints are used: in one,

T is based on the vertical wall thickness, and in the
other, r is based on the horizontal wail thickness.

A set of constraints is imposed on the lower level
wall thicknesses to assure that the section remains

a thin-walled section and that the expression for J

remains valid. (See appendix C.) These constraints
are

tj
gc,i = 0.1----b- 1 _< 0 (j = 2 and 4) (16)

tj 1<0 (j=l and 3) (17)gc,_= 0._ - -

where b and h are the width and height of the box

cross section, respectively.

A set of constraints is imposed on the lumped ar-

eas and wall thicknesses that require that the dimen-

sions are physically possible (i.e., that the lumped

areas can fit inside the box cross section). These
constraints are

b - t4 - t2 1 v/_)gc,i = - _ v_7- _ < 0 (18)

b - t4 - t2 2 vfa-_)gc,i= - _ v_- 1

gc,i -- - (h - tl - ta - 2v/-5_ <_

g¢,i = - (h - tl - ta - 2v_ <

gc,i = - (h - tl - t3 - 2vfS_ <_

_<0 (19)

0 (20)

0 (21)

0 (22)

In addition, a set of constraints representing up-

per and lower bounds on the design variables is used.

For the kth design variable, the lower bound is given

by

gc,i = Vk,l - vk <--0 (23)

and the upper bound is given by

gc,i = Vk -- Vk,u _--0 (24)

where vk, l and Vk, u are the lower and upper design
variable bounds, respectively.

For convenience, the set of lower level constraints

defined by equations (14)-(24) is replaced by a single
cumulative constraint, an envelope function known

as the KS function (ref. 29), which approximates the

active constraint boundary

KS = gmax + lln nce p(ac,_-g_) <_ 0 (25)
P

where gmax is the maximum constraint component

from equations (14)-(24), nc is the number of lower

level constraint components, and p is defined by
the user. Initially, p is small and then increases

until a maximum value Pmax is reached. For large
values of p, the value of KS approaches gmax. The

KS function is a single measure of the degree of

constraint satisfaction or violation and is positive

(violated) if at least one of the constraints gc,i is
violated. The KS function is a single-valued function

that is continuous and differentiable. This property

becomes important when implementing the upper
and lower levels as described in the section on the

overall organization of the IADS procedure.

Lower Level Optimization Procedure

The flowchart for each lower level optimization

procedure is shown in figure 6. Loads, local chord,

box beam width, box beam height, and upper level
stiffnesses are passed down from the upper level anal-

ysis. The lower level design variables (fig. 5) are
used to calculate lower level stiffnesses. Von Mises

stresses are calculated using the loads from the for-

ward flight and maneuver analyses, The lower level
objective function (eq. (13)) and cumulative con-

straint (eq. (25)) are evaluated. The lower level op-

timizations are performed using the general-purpose

optimization program CONMIN. Exact analyses are
used to evaluate the objective function, the con-

straint, and any gradients computed by CONMIN.

The optimization process is converged when the ob-
jective function is minimized and the cumulative con-

straint is satisfied. After convergence, the process

returns to the upper level.

8



Coordination Between Upper and Lower

Levels

The coordination between upper and lower lev-

els is implemented by upper level constraints. These

constraints are imposed to encourage changes in the

upper level design variables that promote consistency

between the upper and lower level stiffnesses. Specif-

ically, these constraints (one for each lower level op-
timization) have the form

g = Fv - (1+  )FoL < 0 (26)

where FoL is the most recent value of the lower

level objective function (i.e., the optimum value of

eq. (13)), F U is an estimate of the change in FoL that

would be caused by a change in the upper level design
variable values, and e is a specified tolerance defined

as the coordination parameter. (See appendix A.)
The importance of this parameter will be discussed
later.

Equation (26) is the general form of the coordi-
nation constraint as formulated in reference 15. As

shown in appendix A, the coordination constraint

can be approximated in terms of the lower level to-

tal optimum sensitivity derivative that expresses how
the optimum lower level objective function and lower

level active constraint will change with a change in

upper level design variable.

Overall Organization of IADS Procedure

The conceptual IADS procedure is shown in fig-

ure 2. It consists of an upper level analysis (fig. 3),
three lower level optimizations (fig. 6), and a coor-

dination task. The actual IADS procedure is more
complicated and requires, in addition, an upper level

sensitivity analysis and three lower level optimum

sensitivity analyses.

The flowchart for the IADS procedure is shown in
figure 7. First, the upper level analysis is executed

for the current set of design variables providing all

the information needed to calculate the upper level

objective function and constraints with the exception
of the coordination constraints. The upper level

analysis also provides the loads, local chord, box

beam width, box beam height, and stiffnesses (to
be matched) to the lower level analysis. Each lower

level optimization is performed to obtain a set of
lower level design variables that match the current

upper level bending and torsional stiffnesses as close
as possible.

Next, an upper level sensitivity analysis is per-
formed consisting of forward finite-difference deriva-

tives (or gradients) of the upper level analysis. These

derivatives are required to approximate the upper

level objective function and upper level constraints

during the upper level optimization. In addition, the

loads and local chords corresponding to the changes

in the upper design variables are saved. These quan-
tities are used in the three lower level optimum sensi-

tivity analyses to approximate the coordination con-

straint (eq. (26)). Appendix A describes how the

coordination constraint is expressed in terms of the

total optimum sensitivity derivative involving both

changes in the optimum lower level objective func-

tion with respect to changes in the upper level de-
sign variables and changes in the active lower level

constraint with respect to changes in the upper level
design variables.

Finally, the upper level optimization occurs con-

sisting of CONMIN and an approximate analysis.
This describes 1 cycle of the IADS procedure. The

process is repeated for additional cycles until conver-

gence is achieved. A very strict convergence crite-

rion is used for demonstration purposes. The overall

procedure is converged when the change in the up-
per level objective function is less than 0.5 x 10 -5

over three consecutive cycles and all the constraints

(both upper and lower level) are satisfied. A step
size of 0.001 is used to compute the finite-difference
derivatives.

Demonstration of IADS Procedure

This section of the paper describes the analytical
blade model, the mission definition, the optimization
problem, and the optimization results used to demon-

strate the IADS procedure. Results are presented for

three studies: (1) the effect of initial design, (2) the

effect of the coordination parameter c, and (3) the
comparison between a single-level and multilevel op-
timization approach.

Analytical Blade Model

The analytical blade model used to demonstrate

the IADS procedure represents a wind tunnel model

of a rotor blade for a four-bladed helicopter having
a blade radius of 4.68 ft. Three sets of advanced ro-

torcraft (RC) airfoils are used along the blade: the

RC(4)-10 airfoil (ref. 35) from the root to 85 per-

cent radius, the RC(3)-10 airfoil (ref. 36) from 85 to

95 percent radius, and the RC(3)-08 airfoil (ref. 36)
from 95 percent radius to the tip. Tables of exper-
imental two-dimensional airfoil data for these three

airfoil types are used in both HOVT and

CAMRAD/JA. The analytical model of the blade

uses 19 aerodynamic segments for HOVT, and it

uses 50 structural segments and 18 aerodynamic seg-

ments for CAMRAD/JA. HOVT is used to predict
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thepowerrequiredin hoverusingnonuniforminflow
(nowakeis included)by trimmingto a constantlift
(CL). CAMRAD/JAisusedto predictrotorperfor-
mance,loads,andfrequenciesusinguniforminflow
with empiricalinflowcorrectionfactorsfor the for-
wardand maneuverflight conditions.Uniformin-
flowis usedto saveon computational costs. (Note

that even though an approximate analysis is used

in the upper level optimization, 46 CAMRAD/JA

analyses are required per optimization cycle.) In
CAMRAD/JA an isolated rotor analysis is used that

trims the rotor to constant lift (CL) and drag (CD)

and zero flapping angle relative to the shaft using col-

lective, lateral cyclic, and longitudinal cyclic pitch.

From the modal analyses in CAMRAD/JA using
10 bending modes and 5 torsional modes, only the

first 6 bending frequencies are below 10 p%r re v and
need to be constrained for a four-bladed rotor. Be-

cause fb,1 corresponds to a rigid-body mode and fb,2
is the 1/rev frequency, the first two frequencies are

not constrained. Constraints are placed on the first

four bending frequencies (fb,3, fb,4, and fb,6 are flap-
ping dominated and fb,5 is lead-lag dominated) and

the first two torsional frequencies (ft,1 represents the

rigid-body torsional mode due to the control system

stiffness and ft,2 represents the first elastic torsional
mode).

Mission Definition

The flight conditions are a constant lift of lg

(331 lb and CL = 0.0081), a propulsive force of 32 lb

(CD = -0.000811), and an advance ratio of 0.35 for

the forward flight condition and a constant lift of

401 lb (C L = 0.00985), a propulsive force of 23 lb

(CD = -0.000596), and an advance ratio of 0.3 for
the maneuver flight condition, which is for a load

factor of 1.22. These flight conditions and the load
factor are similar to those used in reference 37.

Optimization Problem

The objective function is a combination of the

power required in hover, forward flight, and maneu-

ver and of the 4/rev rotating vertical hub shear in

forward flight. The objective function is chosen to
be one dominated by performance with little empha-

sis on dynamics. Of the three powers, reducing the

power required in hover is assumed to be the most im-

portant; it will have twice the weight as the other two

powers. Several values were tried for the weighting
factor on the hub shear term. To obtain the proper

balance between performance and dynamics, k4 must

be between one and two orders of magnitude less

than kl. Thus, for this case, the weighting factors

are chosen to be k 1 = 10, k2 = k3 = 5, and k4 --- 0.5.
Therefore, we have

OBJ=10a +5 P" +5 +0.5 (27)
/-'h,ref Pff,ref Pm,ref b'4,ref

where Ph,ref, Pff,ref, Pm,ref, and S4,re f are 15 hp,
13 hp, 12 hp, and 2 lbf, respectively. The reference
values are chosen to be representative of the powers

required and the hub shear for all the initial blade

designs used in this work.

The upper and lower bounds for the design vari-

ables are given in table 1. On the upper level, 22 de-

sign variables and 95 constraints are used. On the
lower level, 6 design variables and I cumulative con-

straint (the KS function with 24 components) are

used at each of the 3 spanwise locations (i.e., the

root, the point of taper initiation, and the tip):

Parameters and flight conditions are summarized

in table 2. Because the blade is made of aluminum, E

has a value of 15.26 × 108 lb/ft 2, the allowable strain

Ca has a value of 0.05 ft/ft, and the allowable stress
era is 8.352 x 106 lb/ft 2. The values for minimum

tip chord (Ct,min) , power available (Pa), minimum
autorotational inertia, and maximum allowable drag

coefficient (Cd,an) are 0.083 ft, 20 hp, 23.69 lbm-ft 2,
and 0.12, respectively. Frequencies must be at least

0.1 away from a per-rev value (Af = 0.1/rev in
eq. (6)).

Study on Effect of Initial Designs

The IADS multilevel optimization procedure is

demonstrated for three examples using the three

starting points shown in figure 8. Example 1
(fig. (8a)) uses a rectangular planform with a pretwist

of -9 °, a root chord of 0.3449 ft, and upper level stiff-

ness design variables initialized to be consistent with

the lower level initial wall thickness and lumped areas

(i.e., matched stiffnesses). Example 2 (fig. (Sb)) uses

a tapered planform with a pretwist of -16 °, a root
chord of 0.45 ft, and matched stiffnesses. The blade

is rectangular to 80 percent radius and then tapers
linearly to the tip with a 3-to-1 taper ratio. Exam-

ple 3 (fig. (8c)) uses the same planform and pretwist

as example 2 except that the upper and lower level
stiffnesses are unmatched. All these examples use a

value of -0.4 for the coordination parameter (_) in

equation (26). The importance of the choice of E is

examined in a later section of the paper.

Example 1: rectangular planform ("ini-

tially matched stiffnesses"). The starting point
for the optimization is the rectangular blade shown

in figure 8(a). The upper and lower level stiffnesses
are matched because the upper level stiffnesses are
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startedwith the stiffnessesdeterminedby the ini-
tial lowerleveldesignvariables.This is an infeasi-
blestartingpoint becausethe lowerlevelstresscon-
straintsat the root areviolated. (Seethe results
givenin table 3.) The initial andfinal valuesfor
thebladeplanform,performancemeasures,anddy-
namicsmeasuresaregivenin table3(a). Theinitial
andfinal valuesfor the constrainedfrequenciesare
givenin table 3(b). Noticethat the final valuefor
thefourthbendingfrequencyfb,4 is in a different fre-
quency range than the initial value. Final values for

the lower level design variables and the upper level

stiffnesses are given in table 3(c). The final design is
able to improve the performance characteristics from

the initial blade and satisfy all the constraints. Com-

pared with the initial values, the final design repre-

sents a 2.1-, 2.3-, 2.3-, 47.6-, and 3.2-percent reduc-

tion in the power required in hover, forward flight,

and maneuver; hub shear; and upper level objective
function, respectively.

The final stiffness distributions for the upper

(required values) and lower levels (actual values)
are shown in figure 9. The matching of the chord-

wise bending stiffness (EIzz) (fig. 9(a)), the flapwise
bending stiffness (EIzz) (fig. 9(b)), and the torsional

stiffness (G J) (fig. 9(c)) are extremely good. As
shown in figure 9(d), the lower level is able to ob-

tain an extensional stiffness distribution higher than
the minimum requirement set by the upper level.

Convergence histories of the individual terms

of the lower level objective function (eq. (13)) are
shown in figure 10 for the three locations: the root

(fig. 10(a)), the point of taper initiation (fig. 10(b)),
and the tip (fig. 10(c)). Each term (denoted stiff-

ness deviation) is a measure of how well the upper
and lower stiffnesses match. Initially, the stiffnesses
are matched, but the stress constraints are violated

at the root. Therefore, the lower level design vari-
ables must change to satisfy these constraints while

keeping the upper and lower level stiffnesses matched

as close as possible. Notice that the chordwise stiff-

ness at the root, the torsional stiffness at the point of

taper initiation, and the flapwise stiffness at the tip

are the last stiffnesses to match. Further, it appears
that stiffnesses at the point of taper initiation are

particularly difficult to match. This difficulty may
be due to the fact that the point of taper initiation

is a design variable but the root and tip positions are
fixed.

The reason for the deviations in the stiffness is

that the upper and lower levels are in conflict. One

component of the upper level objective function is

the hub shear which can be reduced significantly

by increasing the blade stiffnesses. On the upper

level, if the optimizer did not have to be concerned

with stiffness matching, it would increase the upper

level stiffnesses. Without the lower level to keep the
stiffnesses in check, a heavy or nonbuildable blade

might result.

The information shown in figure 10 is collected

and used to determine when a move-limit adjustment

is necessary for an upper level design variable during

the overall optimization process. (Recall that an ap-

proximate analysis is used on the upper level and an

exact analysis is used on the lower level.) At the

present time, no automatic move-limit adjustment
is used in the approximate analysis on the upper

level. Instead, the IADS procedure is run for 8 cy-
cles and then the stiffness deviations are examined.

When the stiffness deviation increases (e.g., cycle 16),

the design-variable move limits are manually reduced
and the optimization process is continued for another

8 cycles. In practical applications, the optimiza-

tion procedure would terminate after about 30 cy-

cles; however, for demonstration purposes, the con-

vergence criterion is set to a very small value. Both

the upper and lower levels have the same tight con-

vergence criterion on each cycle. Overall convergence
of the IADS procedure might improve if the conver-

gence criterion is relaxed initially and then tightened

as the optimization proceeds.

Example 2: tapered planform ("initially
matched stiffnesses"). The starting point for

the optimization is the tapered blade shown in fig-

ure 8(b). Initially, the upper and lower level stiff-

nesses are matched because the upper level stiffness is

determined by the lower level design variables. How-

ever, this is an infeasible starting point because a
thin-wall-theory constraint is violated on the lower

level. The initial and final values for the blade plan-

form, performance measures, and dynamics measures

are given in table 4(a). The initial and final con-

strained frequencies are included in table 4(b). The
final design is able to improve the performance char-

acteristics from the initial blade. However, the hub
shear increases from the initial value.

Figure 11 shows the final stiffness distributions

for the upper levels (required values) and lower levels
(actual values) for the chordwise bending stiffness

(fig. ll(a)), flapwise bending stiffness (fig. ll(b)),

and torsional stiffness (fig. ll(c)). As shown in

the figure, the stiffness matching is good, although
not as good as in example 1. The lower level is
able to obtain an extensional stiffness distribution

(fig. ll(d)) higher than the minimum requirement.

Figure 12 shows stiffness deviation versus cycle

number for the three matching locations: the root
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(fig. 12(a)),thepointof taperinitiation (fig. 12(b)),
andthe tip (fig. 12(c)). Early in the optimization
process,theflapwiseandtorsionalstiffnessesareboth
unmatched.After cycle10,the matchingsimprove,
and after 25 cycles,all threematchingsaregood.
At the tip (fig. 12(c)),matchingprovesto bequite
difficult.Thetorsionalstifnessis the last to match.
Thereasonfor this is that thebladeinitial designis
tapered,andit isdifficultto placeathin-wallsection
in thespacenearandat thetip andstill matchthe
stiffnessrequiredon theupperlevel.

tially thesameobjectivefunctionvalue.Apparently,
manydifferentcombinationsof designvariablesexist
that satisfythematchingconstraints,andmorethan
oneof theseis optimal. Thefinal solutiondepends
on initial conditions. In example3 (table 5), the
optimizerappearsto convergeto a suboptimalsolu-
tionwhencomparedwithexample2. Bothexamples
startedfromthesameplanform,butexample2starts
with matchedstiffnessesandexample3 startswith
unmatchedstiffnesses.Becausethe initial matching
of thestiffnessesisrelativelyeasy,this suggeststhat

Example 3:

unmatched stiffnesses"). In the previous exam-

ples, the starting points used matched stiffnesses.

The purpose of the present example is to demon-
strate how the IADS procedure behaves when it is

started from an inconsistent set of stiffnesses (i.e.,

unmatched stiffnesses). The starting point for the
optimization is shown in figure 8(c). The initial stiff-

nesses used in the upper level are much larger than
the stiffnesses obtained from the lower level design
variables. The initial and final values for the blade

planform, performance measures, and dynamics mea-

sures are given in table 5(a). The initial and final

constrained frequencies are included in table 5(b).
The final upper and lower level stiffnesses are shown

in figure 13, which also shows that the optimization

procedure is able to match the upper and lower level

stiffnesses successfully. Figure 14 shows the stiffness
deviations for the three matching locations: the root

(fig. 14(a)), the point of taper initiation (fig. 14(b)),

and the tip (fig. 14(c)). As shown in the figure,

the optimization procedure is able to match all three

stiffnesses after 25 cycles, but it is at the expense of

upper level performance. (See table 5.) The power

required for all three flight conditions has increased
substantially along with the hub shear. Notice that

a bending frequency fb,6 has shifted frequency inter-
vals. From these results it appears that although the

optimization procedure will converge when starting

from an initial point that has unmatched stiffnesses,

starting with a set of consistent stiffnesses is better.

Observations on Effect of Initial Design

Study

The IADS procedure has been exercised for three
starting blade planforms: a rectangular planform

with matched stiffnesses, a tapered planform with

matched stiffnesses, and a tapered blade with un-
matched stiffnesses. In all cases, the procedure is able

to find converged feasible designs. When comparing

examples 1 and 2 (tables 3 and 4, respectively), the

reader will find two different final blade designs (i.e.,

the design variable values are different) with essen-

the initial matching should always be enforced.
tapered planform ("initially

When comparing all three examples, the reader
will also notice that each initial blade has a different

frequency range for the bending and torsional fre-

quencies and that each final blade design has a fre-

quency which has shifted a frequency interval (e.g.,

fb,6 in example 3). During the approximate analy-
sis, the optimizer can change the upper level design

variables such that a frequency can shift intervals.

However, as the design-variable move limits are re-
duced, this shifting is less likely to occur.

At the present time, no automatic move-limit ad-

justment is used in the upper level approximate anal-

ysis. However, the stiffness deviation information

(e.g., fig. 10) can be collected and used to determine
when a move-limit adjustment is necessary for an up-

per level design variable during the overall optimiza-

tion process.

Study on Effect of Coordination
Parameter

The purpose of this study is to demonstrate the

effect of _ in the coordination constraint (eq. (26))

on the optimization procedure. Results for three

values of _ (0.4, -0.2, and -0.4) are presented in

table 6 and figures 15, 16, and 9, respectively. If

E is a large positive value, the levels are essentially

independent. The upper level is free to change
the upper level stiffness and chord distributions in

any way that will reduce the upper level objective

function. The only requirement is that the overall

stiffness matching should not degrade by more than
the value of e from the best match found on the last

lower level optimization. For example, if e = 0.4,

the stiffness matching can degrade by 40 percent and

still satisfy the coordination constraints. Therefore,
the procedure could possibly converge with the upper

and lower level stiffnesses being mismatched by as

much as 40 percent. A negative value for ¢ means

that the upper level must improve the matching
achieved on the lower level by that amount. This

section of the paper presents results for several values
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of Eusingthestartingpointin figure8(a)that isalso
usedin example1.

Onechoicefor _wouldbezero.Thiswouldmean
that the upper levelcannotdegradethe matching
achievedonthelowerlevel.Thisvaluewasfoundto
be too restrictivefor the optimizationprocess,and
the procedureconvergedin 3 cycleswith very lit-
tle changein theupper leveldesignvariables.The
reasonfor thiscanbeseenbyexaminingthecoordi-
nationconstraint(eq.(26)). At thestart of theup-
perleveloptimization,thecoordinationconstraintat
eachmatchinglocationisactive(i.e.,g = 0) because

F U is equal to FoL. As the upper level optimizer tries

to change the upper level design variables, the coor-
dination constraints become violated. Therefore, the

upper level optimizer makes only small changes and

the process converges in 3 cycles.

As shown in table 6, when _ - 0.4, the optimiza-

tion process is able to improve the performance and

dynamics measures over the initial blade values and

improve the lower level (i.e., satisfy the stress con-

straints). This improvement is achieved at the ex-
pense of stifness matching. Figure 15 shows the final

stiffness distributions for the upper and lower levels.
The lower level is not able to find a set of stiffnesses

to match those required by the upper level. This fi-
nal result is technically a feasible design because all

the constraints are satisfied. Recall that the upper

and lower stiffnesses need only be as close as possible

(lower level objective function). The upper level co-
ordination constraints do not require the upper and

lower level stiffnesses to match exactly.

When ¢ = -0.2, the optimization procedure is

able to obtain a design that has some improvement

over the initial starting point (table 6). The upper

level objective function is reduced slightly, but not
as much as when s is positive. As shown in figure 16,

the upper and lower stiffnesses match well for the

chordwise stiffness (fig. 16(a)), the flapwise stiffness

(fig. 16(b)), and the torsional stiffness (fig. 16(c)).
The lower level is able to obtain an extensional

stiffness which is slightly larger than that required

by the upper level.

Of the values used in this work, the best value

for _ is -0.4 because the optimization procedure is

able to obtain improvement on the upper level and
find a set of consistent stiffnesses on the lower level.

These results (example 1) are included in table 6 for

completeness. The stiffness distributions are shown

in figure 9.

Observations on Effect of Coordination

Parameter ¢ Study

As shown previously, positive values of c result in
upper level improvement, but poor stiffness matching

and negative values of c result in both upper level

improvement (although not quite as good as when E is

positive) and good stiffness matching. This suggests

that a gradual reduction in E from a positive value

to a negative value could be beneficial. The IADS
procedure was run with ¢ = 0.4 for 8 cycles, _ = 0.2

for 8 cycles, E = -0.2 for 8 cycles, and E = -0.4 for

8 cycles. This technique of gradually reducing the

value of s did not work. Presumably, the upper level
planform area and upper level stiffnesses increased

to improve the upper level objective function when s

was positive so that by the time that c was negative,
the stiffness matching was achieved at the expense

of performance and dynamic improvement on the

upper level. This situation is analogous to example 3
in which the mismatched initial conditions resulted

in stiffness matching at the expense of upper level

improvement.

Study on Comparison of Two-Level and

Single-Level Optimization Procedures

The IADS procedure is compared with a more
traditional optimization procedure without multi-

level decomposition (i.e., the single-level optimiza-

tion procedure). The single-level optimization pro-

cedure combines local and global design variables

and simultaneously evaluates aerodynamics, dynam-

ics, and structures. The design variables are the same
as those used in the IADS procedure with the excep-

tion of the stiffness design variables (EIzx, EIzz, G J,

and EA) which are no longer needed. These stiff-
nesses are calculated from the wall thicknesses, the

lumped areas, and the blade planform. The con-
straints are the same constraints used in the IADS

procedure with two exceptions. First, the coordi-
nation constraints are no longer needed because the

stiffnesses are calculated from the design variables.

Second, the cumulative constraint, (KS), (eq. (25)) is
no longer needed and the individual constraint com-

ponents (eqs. (14)-(24)) are used. The single-level

optimization procedure has 28 design variables and

218 constraints (eqs. (2)-(11) and (14)-(24)). The
optimizer consists of CONMIN and an approximate

analysis. All derivatives are calculated by forward

finite differences and results are presented for four

cases. Cases 1 and 2 compare the single-level and

multilevel approaches using the initial designs in fig-

ures 8(a) and 8(b), respectively. Cases 3 and 4 in-

vestigate whether the multilevel approach can im-

prove on the best solutions found by the single-level
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approach.All theIADScasesuseavalueof -0.4 for
thecoordinationparameter(_).

Case 1: rectangular starting design. The

starting point for case 1 is shown in figure 8(a), and
initial and final results for the two approaches are

given in table 7. Both approaches show improvement

over the initial design. The single-level approach

finds a better overall design in terms of the objective

function than the multilevel approach and is faster

to converge. The multilevel approach has slightly
less performance improvement but more dynamics

improvement than the single-level approach.

Case 2: tapered starting design. The start-

ing point for case 2 is the tapered blade shown in

figure 8(b). Initial and final results for the two
approaches are given in table 8. For this start-

ing point, only the multilevel approach converges

to a feasible design. The single-level approach was

manually discontinued after 64 cycles, The final

single-level design includes large lumped masses re-
sulting in a weight constraint that is grossly violated

(W = 4.4 lb).

Case 3: starting from feasible single-level

design. The purpose of case 3 is to see if the IADS

optimization procedure can improve on the best so-

lution obtained by a Single'level optimization proce-
dure. The initial design for the multilevel procedure

is rectangular to 0.7131 percent radius and then ta-
pers linearly to the tip with a taper ratio of 2.21 to 1.

This is the best solution found using the single-level

approach in case 1 (table 1). The results are given

in table 9. The multilevel approach is able to im-

prove the design only slightly over that obtained by

the single-level approach.

Case 4: starting from infeasible single-

level design. Recall in case 2 that the single-level
approach did not find a feasible design although the

IADS procedure did find a feasible design. The pur-

pose of case 4 is to see if the IADS optimization pro-
cedure can start from that final infeasible single-level

solution (table 8) and obtain a feasible design. Thus,
the initial design for the multilevel procedure has a

pretwist of -13.22 ° and a planform that is rectan-

gular to 0.4934 percent radius and then tapers lin-

early to the tip with a taper ratio of 3.098 to 1 with
a root chord of 0.4899 ft. The IADS procedure is

able to find a feasible design, and the initial and fi-

nal results are given in table 10. The final upper and
lower level stiffness distributions for the three match-

ing locations are shown in figure 17 and the stiffness
deviations are shown in figure 18.
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Observations on multilevel versus single-

level optimization eases. The IADS procedure is

compared with a more traditional optimization pro-

cedure without decomposition (single-level optimiza-
tion procedure) for four cases. In the first and second

cases, the initial design had a rectangular planform

and a tapered planform, respectively. In the third
and fourth cases, the IADS procedure is started with

the best designs from a single-level optimization pro-

cedure. The multilevel optimization approach is able

to find feasible final designs regardless of the initial

planform design. The single-level optimization pro-

cedure could find only a feasible final design when the
initial planform was rectangular (case 1). When the

initial planform was tapered (case 2), the single-level

optimization procedure could not find a feasible de-
sign and was terminated manually because the blade

weight constraint was grossly violated. In cases 3
and 4, the multilevel approach was Started from two

single-level optimization results of cases 1 and 2, re-

spectively. In case 3, the multilevel approach im-

proved the single:level design slightly. In case 4, the
initial design for the IADS procedure is the infeasible

single-level design that has a grossly violated weight
constraint. The IADS procedure is able to start with

this highly infeasible design and find a feasible design.

Concluding Remarks

An integrated aerodynamic/dynamic/structural

(IADS) optimization procedure for helicopter rotor

blades has been developed. The procedure combines

performance, dynamics, and structural analyses with
a general-purpose optimizer using multilevel decom-

position techniques. At the upper level, the structure

interacts with the disciplines of aerodynamics and

dynamics in terms of global quantities (stiffnesses

and average strains). At the lower level, the struc-
ture is defined in terms of local quantities (detailed

dimensions of the blade structure and stresses).

The IADS procedure consists of an upper level

optimization, a lower level optimization, and a coor-

dination task. The upper level objective function is a
linear combination of performance and dynamic mea-

sures. Upper level design variables include pretwist,

point of taper initiation, taper ratio, root chord,

blade stiffnesses, tuning masses, and tuning mass lo-

cations. Upper level constraints consist of limits on

power required in hover, forward flight, and maneu-

ver; airfoil drag; minimum tip chord; trim; blade nat-
ural frequencies; autorotational inertia; blade weight;

and average strains.

The lower level optimization sizes the internal
blade structure to provide the stiffnesses required by

the upper level and assure the structural integrity of



the blade. The lowerleveldesignvariablesarethe
boxbeamwallthicknessesandseverallumpedareas
that areanalogousto longitudinalstringersin awing
boxcrosssection.Thelowerlevelobjectivefunction
is a measureof the differencebetweenthe upper
levelstiffnessesandthestiffnessescomputedfromthe
wall thicknessesandlumpedareas.Thelowerlevel
constraintsareon VonMisesstresses,extensional
stiffnesses,thin-walltheory,anddimensionallimits.

The coordinationtask consistsof a set of up-
perlevelconstraintsthat link thelevelsandpromote
consistencybetweenthe upperandlowerlevelstiff-
nesses.A coordinationparameteris includedin each
constraint.This parameterspecifiesthe amountof
couplingbetweenthelevels.A propervaluefor the
coordinationparameteris foundto becrucialto the
successoftheIADSprocedure.If theparameterhas
apositivevalue,theprocedurewill convergebut the
final stiffnessmatchingcanbeunacceptable.If the
parametervalueis too small(approximatelyzero),
theoptimizationprocesswill terminatewithoutim-
provingthe dynamicsor performancemeasures.A
smallnegativevaluefor thecoordinationparameter
encouragestheupperlevelto improvedynamicsand
performanceusingstiffnessvaluesthatthelowerlevel
canmatch.

TheIADS procedureisdemonstratedby usinga
model-sizerotor bladefor severalinitial bladeplan-
formsandvaryingamountsof couplingbetweenthe
levels. In addition,the IADS multilevelprocedure
is comparedwith a more traditionaloptimization

procedurewithout decomposition(asingle-levelop-
timizationprocedure).In all cases,the IADS pro-
cedureachievessuccessfulresults. It convergesto
a feasibledesignregardlessof whetherthe initial
designhada setof consistentstiffnesses.However,
initializingtheupperlevelstiffnesseswith the stiff-
nessescalculatedfromthelowerleveldesignvariables
greatlyimprovesthefinaldesign.Forthecasesstud-
ied, theIADS procedureis foundto besuperiorto
the single-leveloptimizationprocedure.TheIADS
procedureconvergesto a feasibledesign,evenwhen
thesingle-levelproceduredoesnot. Furthermore,the
IADSprocedureimprovesuponthebestdesignfound
by thesingle-leveloptimizationprocedure.

TheIADS procedureexploitsthe couplingsand
interactionsbetweenthedisciplinesofaerodynamics,
dynamics,and structures. It providesan efficient
methodto integratestructuresand/or structural
propertiesintoanoptimizationprocedurebecauseit
guaranteesthat a structurewith a consistentsetof
structuralpropertiescanbefound.TheIADSproce-
dureprovidesanoptimizationtechniquethat iscom-
patiblewith industrialdesignpracticein whichthe
aerodynamicanddynamicdesignis performedat a
globallevelandthestructuraldesigniscarriedoutat
a detailedlevelwith considerabledialogueandcom-
promiseamongthegroups.

NASALangleyResearchCenter
Hampton,VA23681o0001
August25,1994
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Appendix A

Coordination Constraint

In a multilevel decomposition approach, the cou-

pling between levels is done through a coordination

procedure (e.g., refs. 20 and 25). In the present work,

the coordination procedure based on reference 20 is

used to reconcile the stiffnesses required on the upper
level with the stiffnesses that the lower level can actu-

ally obtain. This reconciliation results in one upper

level constraint at each matching location

g = F U - (I + ¢)F L <_0 (A1)

where FoL is the most recent value of the lower

level objective function (i.e., the optimum value of

eq. (13)), F v is an estimate of the change in FoL that

would be caused by a change in the upper level design

variable values, and _ is the coordination parameter.

This coordination parameter specifies how much the

upper level can either degrade or improve the overall
stiffness matching achieved on the lower level, and it

may also be interpreted as a measure of how closely

coupled the two levels are. If a has a positive value,

the two levels are not closely coupled (i.e., they are

essentially independent). The upper level can change
the upper level stiffness and chord distributions in

any way that will improve the upper level objective

function as long as the stiffness matching is not

degraded by more than the amount of e. If E has
a negative value, the two levels are closely coupled

and the upper level is commanded to improve the

matching by the amount of _.

Equation (A1) is the general form of the coordi-
nation constraint as formulated in reference 15. The

form of the coordination constraint used in this work

is obtained by approximating F U in terms of the cur-

rent optimum lower level objective function (FoL). If

FoL is expanded in terms of a first-order Taylor se-

ries about the lower level optimum, then F U can be

approximated by

NDV dF L IoADViFu = FoL + E dDVi
i=1

(A2)

where DVi is an upper level design variable and

dF L

_-V-7_0 is the total optimum sensitivity derivative
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(ref. 28) given by

° = [ TOKS I (A3)dFL OFL -- A
dDVi 0DVi o o

where OFL/ODVi is the derivative of the optimum

lower level objective function with respect to the up-

per level design variables, ¢gKS/0DVi is the deriva-

tive of the active lower level constraint (eq. (25)) with

respect to the upper level design variables, AT is the

Lagrange multiplier given by

(A4)

where OKS/Ov is the vector of derivatives of the ac-

tive lower level constraints with respect to the lower
level design variables at the lower level optimum. At
a lower level optimum, AT will be positive, and if no

lower level constraint is active, AT is set to zero. By

substituting equation (A2) into equation (A1), the

coordination constraint g is approximated by

(F L NDV dFLIoADVi)-(I+v)FoL<Og = + E dDVi
i=1

(A5)

or simplifying gives

t0 ov,)
\ i=1 dDVi

(A6)

From substituting equation (A3) into equation (A6),
the coordination constraint becomes

g = [oADVi - -_r L < 0

(A7)
which is the form implemented in this work.

The derivative of the coordination constraint is

obtained by differentiating equation (A7) with re-
spect to upper level design variables. Thus,

Og - OFL t (AS)

0DVi 0DVi I0



Appendix B

Drag Constraints

Rotor blades operate over a wide range of flight
conditions: hover, low-speed forward flight, high-
speed forward flight, and maneuver. In addition, the
blade encounters different conflicting phenoma as it
rotates. Figure 19 shows a top view of the rotor disk
with the advancing side when the blade is between
9 = 0 ° and 180 ° and with the retreating side when
the blade is between 9 = 180 ° and 360 ° . On the

advancing side, the blade encounters a higher net
velocity than it does on the retreating side where
an area exists in which the flow is reversed. This

reversed-flow region does not contribute any lift on
the blade. In this work and in previous work (refs. 3,
4, and 14), aerodynamic concerns such as drag di-
vergence and blade stall are expressed in terms of
constraints on the drag coefficient at various azimuth
angles (9).

On the advancing side of the blade, cd is checked
at every spanwise station. The constraint is formu-
lated so that the largest Cdis less than a given value of
Cd,all. At a given azimuth angle, the largest section

drag coefficient Cd,max_ is selected from the aerody-

namic stations along the blade span. (See fig. 20.)
Thus,

Cd,max = max(cd,1, Cd,2,..., Cd,MRA)

(9 = 0°, 15°, 30°,..., 180 °) (B1)

where Cd, i is the section drag coefficient in the ith
aerodynamic segment and MRA is the total number
of aerodynamic segments.

Similarly, on the retreating side of the blade, cd
is constrained at each 9. The difference is caused by
the reverse-flow region which occurs on the retreating
side of the blade, and this must not be considered.

In the reverse-flow region, Cd is large because of the
reversed flow. The velocities in this region have
a tangential velocity similar to the advance ratio.
Therefore, on the retreating side of the blade at a
given azimuth angle, the largest drag coefficient is
give by

Cd,max = max(cd,k, Cd,k+l, . •., Cd,MRA)

(9 = 180 °, 195 °, 210°,..., 360 °) (B2)

where Cd, k is the first drag coefficient corresponding
to the first value of Cl,k outside the reverse-flow region
as shown in figure 21.

At a given azimuth angle, the constraint is for-
mulated as

Cd,max
g = 1 _< 0 (B3)

Cd,all

where Cd,al 1 is the allowable drag coefficient and

Cd,max_ is given by equations (B1) or (B2). Because

several airfoils may be used along the blade, a com-

posite Cd,al 1 is used. Different values of Cd,al 1 could
be used for the advancing and retreating side con-
straints, but in this work the same value of 0.12 is
used.
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Appendix C

Lower Level Structural Analysis

The purpose of this appendix is to summarize the

elementary equations describing the geometric and

structural analysis for the lower level structure. A
typical cross section of the thin-walled isotropic box

section is shown in figure 5. For simplicity, the top

and bottom wall thicknesses, tl and t3, respectively,

are equal. The total cross-sectional area (A) is the
sum of the cross-sectional areas of the box beam

elements Ai and the lumped areas aj (described in
the main text). Thus,

n m

A = _Ai + _a i (C1)

/=1 j=l

By using the familiar relations, the centroid of the

cross section is calculated from the equations

n ?7%

_, Aizi + _ ajxj

i=1 j=l (C2)
zc = A

and
n m

Aizi + ]_ ajzj

i=l j=l (C3)
ZC _ A

where xi and zi are coordinates in the chordwise
and flapwise directions, respectively, that specify the

distance of the centroid of the ith element area (Ai)

from the reference x- and z-axes shown in figure 5.

Similarly, xj and zj are coordinates that specify the

distance of the centroid of the jth lumped area (aj)
from the reference axes, n is the number of elements
that the cross section is divided into for ease of

calculations, and m is the number of lumped areas.

Next, the area moments of inertia of each element
about its centroidal x- and z-axes are calculated from

Ix'k= bkh31---2 (k = 1,2, ... ,n + m) (C4)

Iz,k = h bakl---Y(k -- 1,2,..., + m) (c5)

where bk is the base of the kth rectangular element,

h k is the height relative to the x-axis, and Izz,i = 0
for symmetric elements. By using the parallel-axis

theorem, the moments of inertia of each element are
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found with respect to the centroid of the box beam

as

Icz,k = Iz,k + Akd_ 1
Icz,k Iz,k + Akc_ ) (C6)

where Icz,k and Icz,k are the moments of inertia of
the kth element about the centroid of the box beam,

Iz, k and Iz, k are the moments of inertia of the kth
element about its centroidal axes, and d k and ck are
the distances from the centroid of the element to the

centroid of the box beam in the x- and z-directions,

respectively. The total moments of inertia for the box

beam are equal to the sum of the element inertias:

(C7)/Iz_ = _ Ic_,k

The polar moment of inertia (J) for the box beam
is calculated by using the method described in refer-

ence 38 which gives

J= 4Ac2 (C8)
fds/t

where Ac is the enclosed area of the mean periphery
of the box beam wall, ds is the differential circumfer-

encia] length along the box beam, and t is the local
thickness of the wall.

In order to calculate the lower level objective

function, the bending and torsional stiffnesses of the
box beam are necessary. For an isotropic beam,

the moments of inertia Ixz and Izz calculated in

equation (C7) are multiplied by Young's modulus E

to acquire the bending stiffnesses Elxz and EIzz in
the chordwise and flapwise directions, respectively.

Similarly, the polar moment of inertia is multiplied

by the torsional modulus of elasticity G to acquire
the torsional stiffness of the beam GJ.

The stresses for the constraints in the lower level

optimization are evaluated at the corners of the box

beam by using the Von Mises stress measure given
by

V(a, r) = V_a2 + 3_"2 (C9)

where a is the axial bending stress at the outer fiber
of the cross section, which is given by

= (Mzz'_ (Mzz'_ CF
Or \ /zz ,] Zouter 4- \ ix x ,I Z°uter -t- _- (C10)

and r is the shear stress due to torsion in the wall of

the section with thickness t, which is given by

MT (Cll)
2Act



whereMzz is the flapwise moment, Mzz is the lag

moment, CF is the centrifugal force, and M T is
the torque at the section. The shear stress due to

transverse loads has been neglected for simplicity.

Here, Mzz, Mzz, N, and MT are computed in the
upper level analysis for forward flight and maneuver,

multiplied by a factor of safety (/f), and then passed
to the lower level.
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Appendix D

Wing Box Fitting
At a givenradial location,the outerdimensions

of theboxcrosssectionaredeterminedby placinga
rectangularboxof maximumareawithin the given
airfoil crosssectionusinga modifiedversionof the
methoddescribedin reference34. As shownin
figure 22, the outer dimensions(whereb denotes
the nondimensional box beam width and h denotes

the nondimensional box beam height) depend on the

airfoil section and the local chord c. (Note that the
upper coordinates _-_, lower coordinates _l, horizontal

coordinates 2, and maximum thickness location tmax,

which are all normalized with respect to the chord c,

are given in ref. 35 for the RC(4)-10 airfoil and in

ref. 36 for the RC(3)-08 and RC(3)-10 airfoils.)

The procedure for the wing box fitting is de-
scribed below, and the nondimensional box beam

height (h) is determined first. By starting from the

leading edge of the airfoil at an initial point _l, which

is given as

tmax (D1)
• t- 5

zu-i and _ are determined by linearly interpolating
between the respective upper and lower airfoil coot-

dinates. The nondimensional box beam height (h) is
given by

-i "= z u - _ (D2)

Next, by starting at a distance _r, where

(D3)

the location of the right side of the box is similarly

determined. If the box is not within the airfoil shape,

_r is increased from the trailing edge until the box
is within the airfoil shape. The nondimensional box

beam length (b) is given by

= xr - xt (D4)

and the nondimensional area A of the box is given
by

= _ (D5)

Next, xl is incremented by 1 percent and the process
is repeated to compute a new area. The larger of the

two areas is kept. The process is repeated until three

consecutive areas are within a given tolerance. When

this occurs, a rectangular box of maximum area has
been determined.
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Table 1. Bounds for Design Variables Used in Optimization Examples

Quantity

Twist, deg ..........

Taper initiation, r/R .....
Taper ratio ..........
Root chord, ft ........

Elxz, lb-ft 2 .........

EIzz, lb-ft 2 .........

G J, lb-ft 2 ..........

EA, lb ............

mi, slug/ft ..........

Yi, r/R ...........

ti, ft .............
ai, ft 2 ............

Design variables

Lower bound Upper bound
--20.0

0.26

0.05

0.05

50.00

5.00

5.00
1000.00

0
0.24

0.00008

0

-5.0

0.985

5.0

0.833

2O 000 000.0

1000.0

1000.0

200 000 000.0

0.50

0.95

0.01

0.00004
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Table2. ParametersandFlight Conditions Used in Optimization Examples

(a) Parameters

Minimum autorotational inertia, AImin, lb-ft 2 ......................... 23.69

Allowable drag coefficient, Cd,al1 ................................ 0.12

Minimum tip chord, Ct,min, ft ................................ 0.083

Number of blades, N ..................................... 4

Number of aerodynamic segments:
HOVT .................................. ' ........ 19

CAMRAD/JA ...................................... 18

Number of structural segments ................................ 50

Number of design variables:

Upper level ....................................... 22

Lower level ................................. 18 (6 per location)

Power available, Pa, hp ................................... 20

Blade radius, R, ft ..................................... 4.68

Maximum blade mass, W, lb ................................. 3.5

Factor of safety, tf ..................................... 2.0

Frequency increment, A f, per rev ............................... 0.1

Allowable average strain, Ea, ft/ft ............................... 0.05

ITERmax ......................................... 40

Pmax ...... -........ : ............................. 300

Allowable stress, era, lb/ft 2 ............................... 8.352 × 106

Young's modulus, E, lb/ft 2 ............................... 15.26 × l0 s

(b) Flight conditions

Rotational velocity (in Freon with density of 0.006 slug/ft3), f_, rpm ............... 639.5

Hover tip Mach number .................................. 0.628

eL:
Hover ........................................ 0.00810

Forward flight .................................... 0.00810
Maneuver ...................................... 0.00985

Co:
Forward flight ................................... -0.000811

Maneuver ..................................... -0.000596

Advance ratio:

Forward flight ...................................... 0.35

Maneuver ........................................ 0.30
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Table3. Example1: Rectangular-PlanformStartingPointWith MatchedStiffnesses

(a) Initial andfinal valuesfor bladeplanform,performancemeasures,
anddynamicmeasures

Quantity Initial value Final value
Hoverpower,hp .........
Forwardflightpower,hp ......
Maneuverpower,hp ........
Hubshear,lb ...........
Objectivefunction ........
Twist, deg ............
Taperinitiation,r/R .......
Taper ratio ............

Root chord, ft ..........

ml, slug/ft ............
m2, slug/ft ............

m3, slug/ft ............

Yl, r/R .............

y2, r/R .............
Y3, r/R .............

Cycles to converge ........

14.81
13.26

12.22

2.1

20.578

-9.0
0.7

1.0

0.3449

14.50

12.96

11.94

1.1
19.9107

-11.47

0.7010

1.664

0.3770
0.00027607

0.0031988

0.0020144

0.4503

0.5830
0.4534

76

(b) Initial and final values for constrained frequencies

Frequency, per rev

fb_3 ........

h_4 ........

fb_5 ........

h_6 ........

ft_2 ........

Initial value

2.60

3.77

4.52

7.22

7.30
3.61

Final value

2.68

4.57

4.88

7.55

7.30

3.83

(c) Final values for lower level design variables and upper level stiffnesses

Variable
Ra_iial location 1

(root)

Radial location 2

(point of taper !.nitiation)

Radial location 3

(tip).

tl, ft ......

t2, ft ......

t4, ft ......

al, ft 2 ......

a2, ft 2 ......

a3, ft 2 ......

Final lower level

0.002366

0.003261

0.003414

0.00003341

0.00001615

0.00003281

design variables
"0.002427

0.009954

0.009954

0.00003293

0.00003084

0.00003293

0.0004517

0.0003766

0.0003766

0.00001610

0.00001192

0.00001610

Final upper level stiffnesses

EIzx, lb-ft 2 2057.0 2974.1 153.73

EIzz, Ib-ft 2 . . 122.21 140.03 8.6135

G J, lb-ft 2 .... 127.93 128.53 5.8743

EA, lb ...... 797 370 1 647 300 212 230
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Table4. Example2: Tapered-PlanformStartingPointWith MatchedStiffnesses

(a) Initial andfinalvaluesfor bladeplanform,performancemeasures,
anddynamicmeasures

Quantity Initial value Finalvalue
Hoverpower,hp .............
Forwardflightpower,hp ..........
Maneuverpower,hp ............
Hubshear,lb ...............
Objectivefunction ............
Twist, deg ................
Taperinitiation, fir ...........

Taper ratio ................

Root chord, ft .............

ml, slug/ft ................

m2, slug/ft ................

m3, slug/ft ................

Yl, r/R .................
y2, r/R ..................

Y3, r/R .................

Cycles to converge ........ : • . .

14.85

13.38

11.93

0.6
19.876

-16.0

0.8

3.0

0.45
0

0

0

14.74
13.02

11.84

0.66

19.9326
-10.85

0.37

1.636

0.4932

0.008961

0.01354
0.0246

0.24

0.6164

0.6215
93

(b) Initial and final values for constrained frequencies

Frequency, per rev Initial value Final value

:3 ........

fb,4 ........

b_5 ........

b_6 ........

/t_l ........

_ft12 " ° " .....

2.93

5.64

6.22

10.25

7.30

6.45

2.86

5.33

6.68

9.16

7.30

6.12
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Table5. Example3: Tapered-PlanformStartingPointWith UnmatchedStiffnesses

(a) Initial andfinalvaluesfor bladeplanform,performancemeasures,
anddynamicmeasures

Quantity
Hoverpower,hp .............
Forwardflightpower,hp ..........
Maneuverpower,hp ............
Hubshear,lb ...............
Objectivefunction ............
Twist, deg ................
Taperinitiation, r / R ...........
Taper ratio ................

Root chord, ft ..............

ml, slug/ft ................

m2, slug/ft ................

m3, slug/ft ................
Yl, r/R .................

Y2, r/R .................

Y3, r/R .................

Cycles to converge ............

Initial value

14.85

13.27

11.89
0.186

20.005

-16.0

0.8

3.0

0.45

Final value

16.64
17.46

14.89

2.45

24.624

-11.98
0.8893

1.3148

0.7364

0.008546

0.0O77966

0.0090299
0.32257

0.43886

0.39256

92

(b) Initial and final values for constrained frequencies

Frequency, per rev

fb_3 ........

fb_4 ........

h_5 ........

h_6 ........

.ft_l ........

ft_2 ........

Initial value

2.87

5.54

8.62

9.65

7.30

5.48

Final value

2.90

5.87

8.10

10.50

7.30

5.12
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Table6. Effectof CoordinationParameter(c) onMultilevelOptimizationProcedure

Initial value 0.4Quantity
Hoverpower,hp ...... 14.81 14.44
Forwardflightpower,hp . 13.26 12.77
Maneuverpower,hp ..... 12.22 11.75
Hubshear,lb ........ 2.1 0.2072
Objectivefunction ..... 20.58 19.48
Twist,deg ......... -9.0 - 13.32
Taperinitiation,r/R .... 0.7 0.7859

Taper ratio ......... 1.0 3.155
Root chord, ft ....... 0.3449 0.3651

ml, slug/ft ......... 0 0.02571
m2, slug/ft ......... 0 0.00211

m3, slug/ft ......... 0 0.00099

yl,r/R .......... 0.4124

Y2, r/R .......... 0.4154

Y3, r/R .......... 0.4382
Cycles to converge ..... 90

Final value at

-0.2

14.60
13.11

11.96

1.85

20.22

-11.12

0.8246
1.410

0.3606

0.00135

0.0000995
0.0000727

0.3115

0.3950

0.4292

152

of--

-0.4

14.50

12.96

11.94
1.1

19.9107
-11.47

0.7010

1.664

0.3770
0.0002761

0.0O31988

0.OO2O144

0.4503
0.5830

0.4533

76
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Table7. Case1: Comparisonof Single-LevelandTwo-LevelOptimization
Proceduresfor RectangularStartingDesign

Quantity
Hoverpower,hp ......
Forwardflightpower,hp .
Maneuverpower,hp .....
Hubshear,lb ........
Objectivefunction .....
Twist,deg .........
Taperinitiation,r/R ....

Taper ratio .........

Root chord, ft .......

ml, slug/ft .........

m2, slug/ft .........
m3, slug/ft .........

Yl, r/R ..........

Y2, r/R ..........

Y3, r/R ..........

Feasible design .......

Initial value

14.81

13.26

12.22
2.1

20.578

-9.0

0.7

1.0

0.3449

Final value for approach--

Single level

14.42

12.87

11.83

1.27

19.5469

-13.25
0.7131

2.21

0.3813

Two levels

14.50

12.96

11.94
1.1

19.9107

-11.47

0.7010

1.664

0.3770
0.003065

0.04554
0.013545

0.3073

0.5132

0.5061

Yes

0.00027607

0.0031988

0.0020144

0.4503

0.5830
0.4534

Yes

Table 8. Case 2: Comparison of Single-Level and Two-Level Optimization

Procedures for Tapered Starting Design

Final value for approach--

Quantity

Hover power, hp ......

Forward flight power, hp .
Maneuver power, hp .....

Hub shear, lb ........

Objective function .....
Twist, deg .........

Taper initiation, r / R ....
Taper ratio .........
Root chord, ft .......

ml, slug/ft .........

m2, slug/ft .........
m3, slug/ft .........

Yl, r/R ..........

Y2, r/R ..........
Y3, r/R ..........

Feasible design .......

Initial value

14.85
13.38

11.93

0.6
19.876

-16.0

0.8

3.0

0.45

0
0

0

Single level

14.41

12.67

11.68
0.7137

19.377

-13.22

0.4934
3.098

0.4899

0.002305

0.1636

0.2922
0.2420

0.2420

0.3610
No

Two levels

14.74

13.02
11.84

0.66

19.9326

-10.85
0.37

1.636

0.4932

O.O08961

0.01354
0.0246

0.24

0.6164

0.6215
Yes
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Table9. Case3: MultilevelApproachStartingFromFeasible
Single-LevelOptimizationSolution

Quantity
Hoverpower,hp ......
Forwardflightpower,hp .
Maneuverpower,hp .....
Hubshear,lb ........
Objectivefunction .....
Twist,deg .........
Taperinitiation, r/R ....
Taper ratio .........

Root chord, ft .......

ml, s]ug/h .........
m2, slug/ft .........

m3, slug/ft .........
yl,r/R ..........

Y2, r/R ..........

y3, r/R ..........
Feasible design .......

Initial value

from single-
level approach

14.42

12.87

11.83

1.27

19.5469
-13.25

0.7131

2.21

0.3813

.003065
0.04554

0.013545

0.3073

0.5132
0.5061

Yes

Final value

from two-

level approach
14.44

12.89

11.83

1.13
19.814

-12.51

0.7450

2.4041

0.3834
0.001920

0.08434

0.01985

0.3487
0.4397

0.4421

Yes

Table 10. Case 4: Multilevel Approach Starting From Infeasible

Single-Level Optimization Solution

Quantity

Hover power, hp ......

Forward flight power, hp .

Maneuver power, hp .....

Hub shear, lb ........

Objective function .....

Twist, deg .........

Taper initiation, r/R ....
Taper ratio .........

Root chord, ft .......

ml, slug/ft .........

m2, slug/ft .........

m3, slug/ff .........

Yl, r/R ..........

Y2, r/R ..........
Y3, r/R ..........

Feasible design .......

Initial value

from single-

level approach
14.41

12.67

11.68

0.7137

19.377
-13.22

0.4934

3.098

0.4899

0.002305

0.1636

0.2922
0.2420

0.2420

0.3610
No

Final value

from two-

level approach
14.83

13.35

11.96

1.29

20.328
-10.80

0.36

2.164

0.5926

0.0009530
0.04803

0.1042

0.2913

0.3221
0.4373

Yes
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Figure 8. Starting points.
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